

An Introduction to The Cambridge Crystallographic Data Centre The Cambridge Structural Database Chemistry Data Initiatives

Ian Bruno

Cambridge Crystallographic Data Centre

@ijbruno @ccdc_cambridge

The Cambridge Crystallographic Data Centre

International Data Repository Archive of crystal structure data High quality scientific database

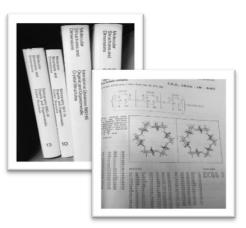
Scientific Software Provider Search/analysis/visualisation tools Scientific applications

Collaborative Research Organisation New methodologies Fundamental research

> Education and Outreach Conferences, Workshops, Training, Teaching

The Crystallographic Data Centre Cambridge

Olga Kennard, Founding Executive Director

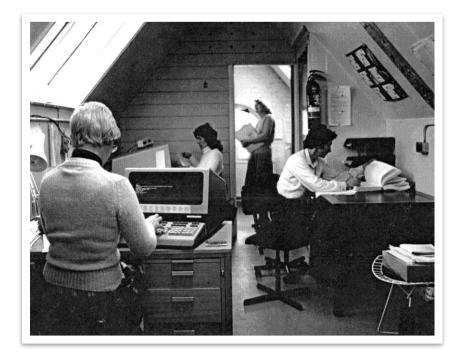

"The database was established in 1965 to fulfil a dream of myself and a great scientist, the polymath J.D. Bernal. We had a passionate belief that the collective use of data would lead to the discovery of new knowledge which transcends the results of individual experiments."

Kennard, O. "From Private Data to Public Knowledge." The Impact of Electronic Publishing on the Academic Community. Ed. I Butterworth. Portland Press Ltd, 1997. 159–166.

Established 1965 with funding from the Royal Society

Main objective was to assemble a computer-based file of information and data

Data was first published in printed volumes generated from the computer file



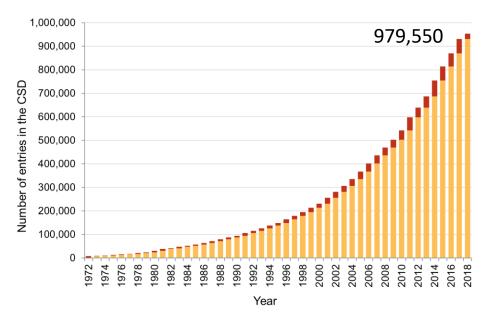
Early Publication of Crystal Structures

Hand-typed tables of coordinates in journal articles manually transcribed into database records

178					J. CHEM.	SOC. DALTON 1	1703	
able 1. Crystallographic	data and details	of data collection	and processing fo	or ML(NO3)2, wit	th M = Cu [in (1	l)], Ni [in (2)], an	d Cd [in (3)]	
		(1)		(2)		(3)		
Stoicheiometry M	J. CHEM. SOC.	DALTON TRANS	1985					
Lattice type Space group								
a/Å b/Å	Table 2. Atomic	co-ordinates with	estimated standard	deviations in par	entheses			
c/Å	Atom	Xia	Y/b	Z/c	Atom	X/a	Y/b	Z/c
α/°	(a) Compos	and (1) (x 10 ⁵ for	Cu. $\times 10^4$ for othe	rs)				
β/"	Cu	7 734(2)	11 519(5)	62 931(2)	C(27)	2 251(3)	671(8)	4 844(4)
γ/° U/Å ³	N(01)	1 493(1)	-122(3)	6 454(2)	C(30)	2 044(2)	483(5)	6 905(2)
	C(10)	1 359(2)	-1 289(5)	6 758(3)	N(31)	1 888(1)	1 149(3)	7 431(2)
Z	N(11)	708(1)	-1 425(3)	6 566(2)	N(32)	1 386(1)	1 906(3)	7 246(2)
$D_c/g \text{ cm}^{-3}$	N(12)	379(1)	- 356(3)	6 561(2)	C(33)	1 395(2)	2 512(4)	7 809(2)
F(000)	C(13)	- 162(2)	-764(4)	6 558(2)	C(34)	1 907(2)	2 157(5)	8 332(2
μ(Mo-K _s)/cm ⁻¹	C(14)	-171(2)	-2078(4)	6 570(2)	C(35)	2 220(2)	1 302(4)	8 094(2
Approximate cry	C(15)	386(2)	-2475(4)	6 586(2)	C(36)	918(3)	3 421(6)	7 819(3
dimensions (m	C(16)	-651(2)	142(7)	6 546(4)	C(37)	2 788(2)	622(6)	8 412(3)
Number of settin	C(17)	650(3)	- 3 767(5)	6 606(4)	N(40)	- 304(2)	2 265(5)	5 590(3)
θ range/° (cell di	C(20)	1 549(2)	- 339(5)	5 777(2)	O(41)	136(1)	2 399(3)	6 163(2)
(data c	N(21)	1 509(2)	902(3)	5 458(2)	O(42)	-717(2)	3 031(5)	5 486(3)
h range	N(22)	1 099(1)	1 738(3)	5 555(2)	O(43)	-272(2)	1 385(5)	5 217(2
k range	C(23)	1 123(2)	2 745(4)	5 177(2)	N(50)	1 960(2)	3 011(5)	3 346(2)
/ range	C(24)	1 539(3)	2 539(6)	4 854(2)	O(51)	1 968(2)	4 072(5)	3 604(3)
Number of reflect	C(25)	1 786(2)	1 358(5)	5 035(2)	O(52)	1 526(2)	2 345(6)	3 201(2)
measured	C(26)	743(3)	3 859(6)	5 1 3 9 (3)	O(53)	2 417(2)	2 613(5)	3 337(4)
independent								
observed	(b) Compound (2) (×10 ⁴)						
Final R	Ni	5 110(1)	3 357(1)	7 658(1)	N(31)	2 270(6)	1 531(4)	7 437(3)
Final R'	N(01)	4 516(6)	1 860(4)	6 658(3)	N(32)	2 763(6)	2 672(4)	7 868(3)
	C(10)	5 885(9)	995(6)	7 036(5)	C(33)	1 964(8)	2 706(6)	8 528(4)
	N(11)	6 173(6)	936(4)	8 049(4)	C(34)	897(8)	1 577(7)	8 516(5)
	N(12)	6 420(6)	2 047(5)	8 549(3)	C(35)	1 109(8)	827(6)	7 812(4)
	C(13)	6 802(8)	1 740(7)	9 452(5)	C(36)	2 223(9)	3 805(7)	9 165(5)
	C(14)	6 818(11)	476(8)	9 522(6)	C(37)	326(10)	-423(6)	7 459(6)
	C(15)	6 405(9)	- 15(6)	8 625(5)	N(40)	7 521(3)	5 107(5)	8 260(4)
	C(16)	7 092(10)	2 741(8)	10 200(5)	O(41)	6 084(6)	4 914(4)	8 518(3)
	C(17)	6 208(11)	-1 311(6)	8 281(6)	O(42)	8 610(7)	5 982(5)	8 553(4)
	C(20)	4 684(10)	2 395(6)	5 790(5)	O(43)	7 666(5)	4 302(4)	7 690(3)
	N(21)	3 777(7)	3 513(5)	5 656(4)	N(50A)	1 902(9)	8 557(6)	5 048(5)
	N(22)	3 928(6)	4 195(5)	6 453(4)	O(51A)	1 307(7)	7 942(6)	4 339(5)
	C(23)	2 971(9)	5 137(6)	6 121(6)	O(52A)	3 333(10)	8 780(8)	5 620(7)
	C(24)	2 311(10)	5 059(8)	5 134(6)	O(53A)	573(14)	8 512(6)	5 431(6)
	C(25)	2 805(9)	3 985(7)	4 857(5)	N(50B)	2 032(9)	8 882(6)	4 874(5)
	C(26)	2 759(11)	6 060(7)	6 797(6)	O(51B)	1 353(7)	8 323(6)	4 169(5)
	C(27)	2 488(11)	3 386(8)	3 912(5)	O(52B)	3 281(10)	9 440(8)	5 053(7)
	C(30)	2 652(8)	1 313(6)	6 551(4)	O(53B)	1 492(14)	8 544(6)	5 645(6)

Kleywegt et al. (1985) J. Chem. Soc., Dalton Trans, 2177-2184 doi:10.1039/DT9850002177

Communic S. Wright, Dalton Transactions, 2018, 47, 7036, DOI: 10.1039/C8DT01332B


Publication of Crystal Structures Today

Electronic data files deposited and disseminated via the Web and linked with journal articles

511 C13 C14 C15 1/4.5(2) C13 C14 C15 C16 0.1(4) C14 C15 C16 0.1	Issue 20, 2018		Previous Article	Next Article		
C13 Cu2 Cu 1.0000000 0.5000000 C13 Cl1 (_diffrn_reflns_point	From the journal: Dalton Transactions	Results			-methylpyridin-2-yl)(phenyl)silanediyl]bi	
Cl5reflns_number_total Cl5 ^{loop} _reflns_number_gt Cl3 _atom _reflns_threshold_ex		Database Identifier	Deposition Number	Space Group: C 2/c (15), C	Cell: a 20.9935(5)Å b 10.2893(2)Å c 22	2.4986(5)Å, α 90° β 93.9540(10)° γ 90°
C7atom_reflns_Friedel_cove C1atom_reflns_Friedel_frac		LEVYET	1833560	3D viewer		Chemical diagram
C13_atom_reflns_Friedel_frac C7atom		LEVYIX	1833561			
Clatom_reflns_special_deta C24atom; Sil ^{Cul (} Reflections were mer	The coordination chemistry of the neutral	LEVYOD	1833562	Jan Star	HONE.	H,C
C19 Sil (class for the calcul C20 Nl 0.	pyridyl silicon ligand [PhSi(6-Me-2-py) ₃]	LEVYUJ	1833563		Service and the service of the servi	
C21 N2 0. reflns_Friedel_frac C20 N4 0.Friedel pairs measur		✓ TIGWUE	1833558	1 m C		H ₃ C / H
Sil Cl 0. possible theoretical C22 C2 0. systematic absences	Alex J. Plajer, ^a Annie L. Colebatch, ^a Markus Enders, ^b Álvaro García-Romero, ^c A	TIGXAL	1833559	A CAR	Contraction of	
C3 0., sh C4 0.	Dominic S. Wright*a			1-23-57		$\langle \bigcirc \rangle \rightarrow \langle \rangle$
C5 0computing_data_coll TIT C6 0computing_coll_refi (C7 0computing_data_redu (C8 0computing_structure CELC9 0computing_structure ZER C10 (_computing_molecular	Author affiliations	Dow	/nload -			Ph
LAT C11 (computing_publicati SYM C12 (SFA C19 (loop_ UNIC20 (atom site label	Abstract			H Disorder ¢	Menu Open -	н,с
SIZ ^{C21} atom_site_type_symb TEM ^{C22} atom_site_fract_x L.S ^{C25} atom_site_fract_y	Difficulties in the preparation of neutral ligands of the type $[RSi(2-py)_3]$			Capped Sticks V No Labels		View group symbols key
ACT.C26 (atom_site_fract_z BON Cu2 (atom_site_U iso_or_ CON Cl1 (atom_site_adp type	pyridyl ring unit) have thwarted efforts to expand the coordination che			Additional details		
CON CII (_atom_site_adp_type LIS _atom_site_occupancy FMA_geom_atom_site_site_symm	simply switching the pyridyl substituents to 6-methyl-pyridyl groups (Deposition Number	1833560	
PLA;atom_site_site_symm PLA;atom_site_calc_flag WGH All {atom_site_refinemen	allowed smooth, high-yielding access to the $[PhSi(6-Me-2-py)_3]$ ligan			Data Citation		, Markus Enders, Álvaro García-Romero, Andrew D. Bo
FVA are { atom_site_refinemen CO1 into atom site refinemen	coordination chemistry with transition metals. The synthesis, single-cr				García-Rodríguez, Dominic S. Wr Determination, 2018, DOI: 10.551	ight CCDC 1833560: Experimental Crystal Structure 7/ccdc.csd.cc1ziz3
and t_atom_site_disorder_ CL1 used _atom_site_disorder_	dynamics of the new complexes [{PhSi(6-Me-2-py)}_3)CuCH_3CN][PF_6],			Deposited on	29/03/2018	,
treat Fel Fe 0.23371(2) 0. CL2; Cl1 Cl 0.16365(3) 0.	[{PhSi(6-Me-2-py) ₃ }FeCl ₂], [{PhSi(6-Me-2-py) ₃ }Mo(CO) ₃] and [{PhSi(6-					
Cl2 Cl 0.20883(4) 0. SII ^{loop} _Sil Si 0.38708(3) 0.	paramagnetic Fe ²⁺ and Co ²⁺ complexes show strongly shifted NMR re			Crystallographer(s)		
_geonN1 N 0.30132(9) 0.58 N1 _geonN2 N 0.26923(9) 0.48	due to large Fermi-contact shifts. However, magnetic anisotropy also			Crystallographer	Andrew Bond 💿	
_geon N3 N 0.40083(11) 0.2 N2 _geon C1 C 0.35204(11) 0.5	shifts so that both contributions have to be included in the paramagne			Affiliation	University of Cambridge	
	55(3) 0.79468(13) 0.0400(7) Uani 1 1 d 16 0.831310 0.048 Uiso 1 1 calc R U			Associated publications		
C4 C 0 21200/14) 0 50/	10 0.031010 0.040 0150 1 1 Calc x 0				Annie L. Colebatch, Markus Enders, À	Ivaro García-Romero, Andrew D. Bond, Raúl García-Ro

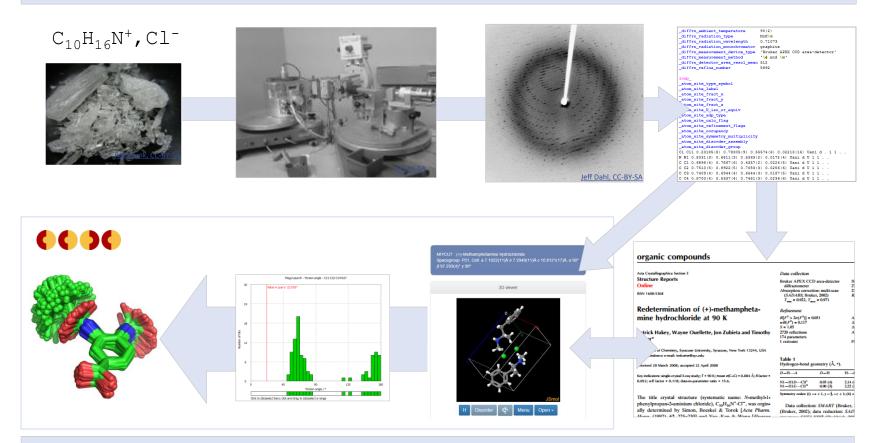
The Cambridge Structural Database

- □ 970,000+ small-molecule crystal structures
- Over 80,000 datasets deposited annually
- Structures available for anyone to download
- Links to over 1,000 journals
- Enriched and annotated by experts
- Access to data and knowledge

One of 1st – METALD Metaldehyde – published 1936

250,000th – IBEZUK Conducting metal-dinitrogen polymer

500,000th – EFEMUX01 Lamotrigine – an anti-convulsant drug


750,000th – ZOYBIA Co-crystal of vanillic acid and theophylline

1,000,000th structure expected in 2019 #CSD1Million

From Data to Knowledge

Experimental Data

Structural Knowledge

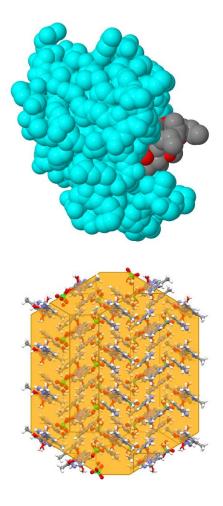
Structural Chemistry Insights

• Crystal structure data gives insights into:

Molecular dimensions and shape

Molecular interactions

□ Solid form properties

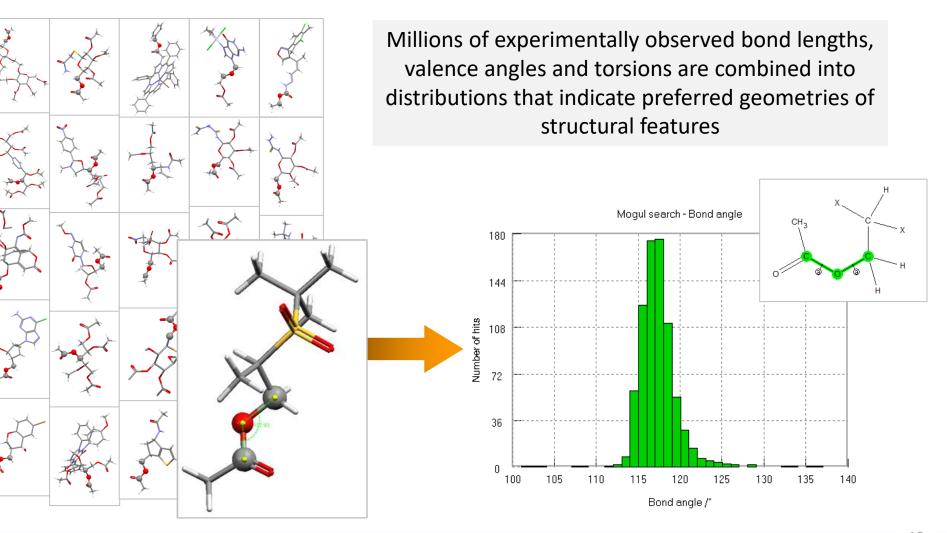

• Applicable to various domains including:

Drug design and development

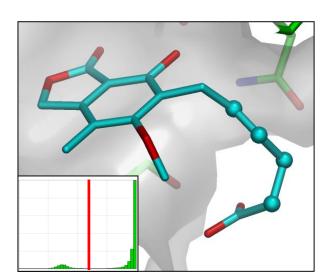
Design of new materials

Crystal engineering

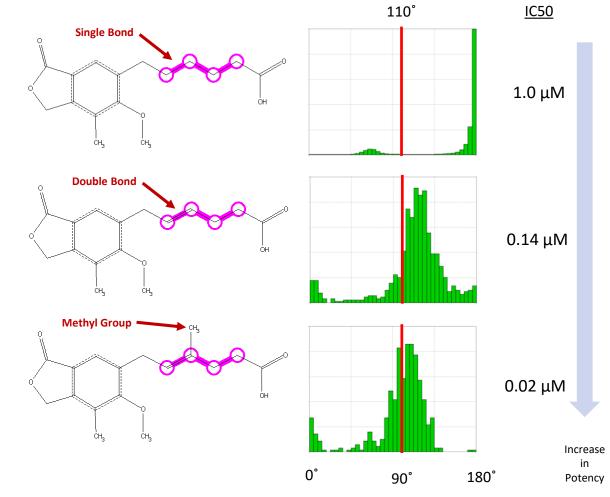
□ Structure validation


Crystal Structure Knowledge Helps Drug Design

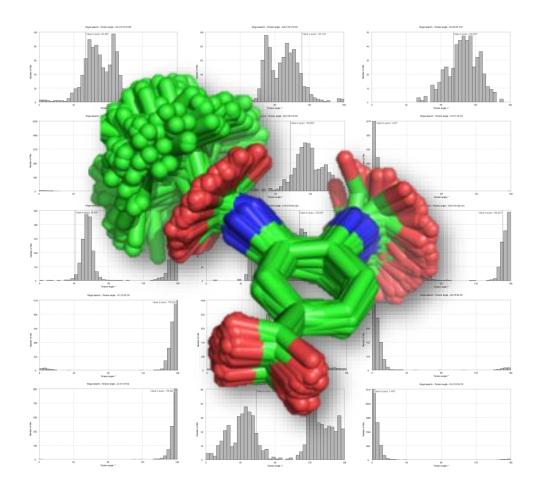
Understanding factors that influence the shape of molecules helps identify better drug candidates



Mogul A Knowledge Base of Molecular Geometries

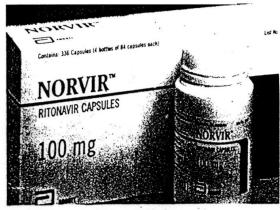


Knowledge-driven Conformer Design


The immunosuppressant mycophelonic acid binds to inosine monophosphate dehydrogenase with an affinity of $1.0 \mu M$.

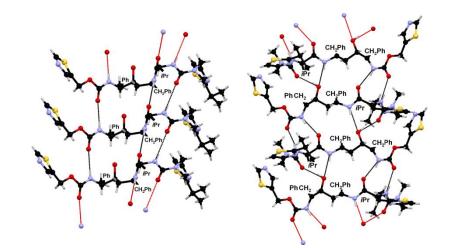
The CSD reveals that the highlighted torsion at 110° is unfavourable.

Knowledge-based Conformer Generation


- Bond, angle and torsion distributions derived from experimental structures are used to produce realistic ensembles of low energy structures.
- The CSD Conformer Generator can be used to minimise molecular conformations and generate diverse conformer subsets based on experimental data
- Applicable to drug discovery and drug development

Mitigating Risk in Drug Development

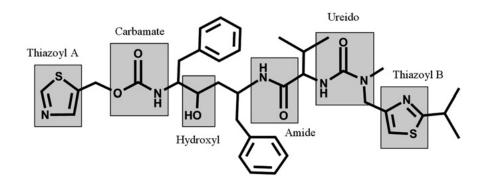
Manufacturing problems hit Abbott's HIV drug ritonavir


Capsules of Abbott Laboratories' protease inhibitor Norvir (ritonavir) are likely to become unavailable by the middle of August. The company has a problem with the manufacture of the anti-HIV capsules which it cannot resolve at present.

Capsules unlikely to be available from mid-August

The problem relates to "undesirable" crystal formation. Abbott says that a series

ples from a number of marketed batches of capsules were examined and there was no



Different crystal forms, different interactions, different solubility, different stability.

Knowing the likelihood of specific molecular interactions occurring helps assess the risk of undesirable crystal formation

Hydrogen Bond Propensity: Ritonavir

Predictive analytics is used to identify feasible and unusual crystal packings based on information from known crystal structures of molecules similar to the target.

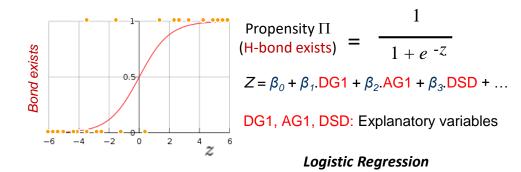
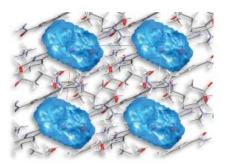


 Table 1
 Propensity predictions for potential donor-acceptor combinations in ritonavir (as labelled in Fig. 1), and observed hydrogen bonds in either polymorphic form

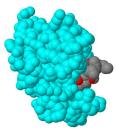
amide amidecarbamate 0.618 0.094 x amide hydroxylhydroxyl 0.551 0.052 x carbamate hydroxylcarbamate 0.538 0.090 \checkmark hydroxylcarbamate 0.537 0.090 x amideamide 0.501 0.055 \checkmark amideureido 0.499 0.072 x carbamatehydroxyl 0.470 0.078 x hydroxylhydroxyl 0.469 0.037 x carbamateamide 0.420 0.083 x hydroxylamide 0.419 0.045 x	Form II
carbamatecarbamate0.5380.090✓hydroxylcarbamate0.5370.090Xamideamide0.5010.055✓amideureido0.4990.072Xcarbamatehydroxyl0.4700.078Xhydroxyl0.4690.037Xcarbamateamide0.4200.083Xhydroxylamide0.4190.045X	×
hydroxylcarba mate0.5370.090Xamideamide0.5010.055✓amideureido0.4990.072Xcarbamatehydroxyl0.4700.078Xhydroxyl0.4690.037Xcarbamateamide0.4200.083Xhydroxylamide0.4190.045X	1
amideamide0.5010.055✓amideureido0.4990.072Xcarbamatehydroxyl0.4700.078Xhydroxyl0.4690.037Xcarbamateamide0.4200.083Xhydroxylamide0.4190.045X	×
amide ureido 0.499 0.072 X carbamate hydroxyl 0.470 0.078 X hydroxyl hydroxyl 0.469 0.037 X carbamate amide 0.420 0.083 X hydroxyl amide 0.419 0.045 X	×
carbamate hydroxyl 0.470 0.078 X hydroxyl hydroxyl 0.469 0.037 X carbamate amide 0.420 0.083 X hydroxyl amide 0.419 0.045 X	×
hydroxyl hydroxyl 0.469 0.037 X carbamate amide 0.420 0.083 X hydroxyl amide 0.419 0.045 X	×
hydroxyl hydroxyl 0.469 0.037 X carbamate amide 0.420 0.083 X hydroxyl amide 0.419 0.045 X	×
hydroxyl amide 0.419 0.045 X	X
	1
carbamate ureido 0.418 0.088 X	×
	X
hydroxyl ureido 0.417 0.058 X	1
ureido carbamate 0.319 0.086 X	1
ureido hydroxyl 0.263 0.041 X	x
ureido amide 0.225 0.040 X	X
ureido ureido 0.224 0.044 🗸	X
amide thiazoyl a 0.152 0.054 X	X
amide thiazoyl b 0.142 0.050 X	X
carbamate thiazoyl a 0.115 0.044 X	X
hydroxyl thiazoyl a 0.114 0.039 ✓	X
carbamate thiazoyl b 0.107 0.041 X	X
hydroxyl thiazoyl b 0.106 0.036 X	X


^{*a*} The error bars of the coefficient value: the value falls within this range at the 95% confidence level, based on a χ^2 distribution.

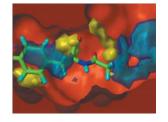
$\mathbf{O} \mathbf{O} \mathbf{O} \mathbf{O}$

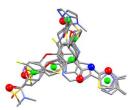
CSD-Materials

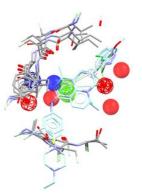
Informatics-based solutions that aid in the understanding and prediction of solid form stability and properties



- Discover preferred interactions and engineer changes to satisfy these requirements using *Full Interaction Maps*
- Interpret crystal packing and compare with CSD data using powerful packing feature, similarity and motif searches, and hydrogen bond propensity analysis
- Understand the effects of hydration on your lattice with the *hydrate analyser*
- Explore the structures of potential co-crystals using the *molecular complementarity tool*

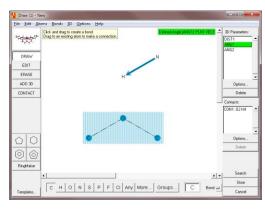

Developed in partnership with Industry through CCDC's Crystal Form Consortium

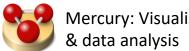

CSD-Discovery


GOLD: Protein-ligand docking - virtual screening, lead optimisation and binding mode prediction

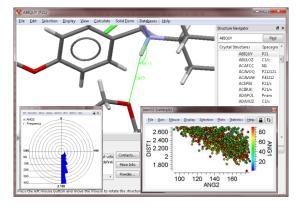
SuperStar: Knowledge-based prediction of intermolecular interactions based on data from small molecule crystal structures

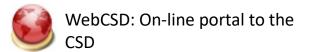
Ligand Overlay: applying structural knowledge to identify common binding modes, interactions and geometries of structurally diverse ligands


CSD-CrossMiner: Fast and flexible pharmacophore searching across the CSD and the PDB for lead optimisation and scaffold hopping

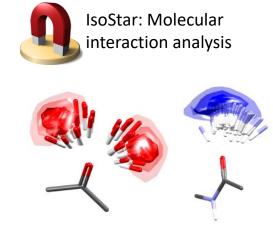


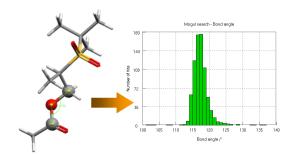
CSD-System




ConQuest: Advanced 3D searching

Mercury: Visualisation





if num_unusual_torsions < min_unusual_torsions: min_unusual_torsions = num_unusual_torsions

Mogul: Molecular geometry analysis

CCDC Knowledge-based Software Solutions

<u>CSD-System</u>: Crystallographers, structural chemists, educators

Find, analyse and communicate crystal structures

CSD-Discovery

Medicinal chemists, computational chemists, structural biologists

Protein and ligand-based design of new molecules

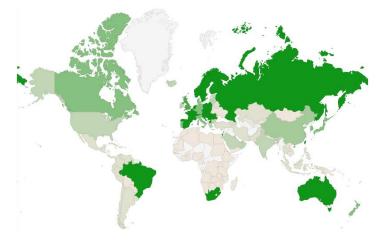
CSD-Materials

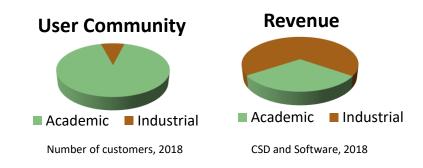
Solid form experimentalists, crystallization scientists

Behaviour and properties of new materials

CSD-Enterprise

All CCDC application software (available to all Academics)

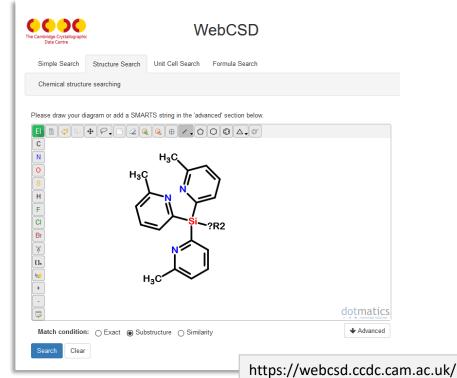



Academic Access to Value-added Services

- Country-wide licences
 - via National Affiliated Centres
- Campus-wide licences
 - often through University Libraries
- Individual Researchers and Groups
 - cost can be included in grant applications
- CCDC Subsidy
 - Supporting research in developing countries via the <u>FAIRE</u> programme

24 countries with academic country-wide licences

Colour-coding reflects nature of academic arrangements



Chemistry Department Access to CSD-Enterprise

- **Download CSD onto your machine** (Linux, Windows, OS X) following these instructions: <u>https://www.ch.cam.ac.uk/computing/software/cambridge-structural-database-system</u>
- CSD-System Components **installed on MCS machines** in the Chemistry Library and around the University:
 - o CSD Conquest
 - o CSD DASH
 - o CSD 2017 encipher
 - CSD 2017 GOLD
 - o CSD 2017 Hermes
 - o CSD 2017 IsoStar
 - o CSD 2017 IsoStar Server
 - o CSD 2017 Mercury
 - o CSD 2017 Mogul
 - o CSD 2017 PreQuest
 - o CSD 2017 Python API

Sharing Crystallographic Data

Principles and Practices

Download -

CSD-Community Services

• Free community services

- Data deposition
- Data validation
- Data archiving
- Data access

CCDC Number(s) or CSD refcodes(s)

A single publication DOI or CSD DOI

e.g. Journal of the American Chemical Society

0

I have none of the above

Volume

e.g. sulfadiazine

e.g. F.H.Allen

Year

CCDC

identifier(s)

Compound name DOI

Authors

Journal

details

Publication

loop_ atom site label

_atom_site_type_symbol _atom_site_fract_x _atom_site_fract_y _atom_site_fract_z atom_site_U iso or equiv

LIMSUW : bis((µ=Chloro)-(µ=chloro))-hexakis(µ=diethyl phosphonato)-bis((η =cyclopentadienyl)-(trifluoromethanesulfonate)-(nitrosyl))-di-cobalt-di-ruthenium(ii)-di-silver Space Group: P21/n, Cell: a 9.5821(6)Å b 36.808(2)Å c 19.0222(11)Å, a 90° β 91.1430(10)° γ 90°

JSmol

Packing

None

Chemistry, 2007, 46, 7193, DOI: 10.1021/ic7007683

Measure

Citation - Xiao-Yi Yi, T.C.H.Lam, Yiu-Keung Sau, Qian-Feng Zhang, I.D.Williams, Wa-Hung Leung, CCDC

Xiao-Yi Yi, T.C.H.Lam, Yiu-Keung Sau, Qian-Feng Zhang, I.D.Williams, Wa-Hung Leung, Inorganic

None

5: Experimental Crystal Structure Determination, 2007, DOI: 10.5517/ccq8y74

3D viewer

Labels

No Labels

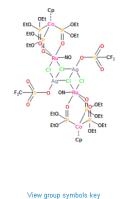
ditional CCDC details

ited on: 15/10/2007

Associated publications

0

0


0

0

0

0

Clear

Chemical diagram

) 0.044(3) Uani 0.50 1 d PDU A 1 .0327(11) Uani 0.50 1 d PDU A 1 .029(4) Uani 0.50 1 d PDU A 1 0.031(4) Uani 0.50 1 d PDU A 1 0.050 1 calc PR A 1 0.027(4) Uani 0.50 1 d PDU A 1 0.029(4) Uani 0.50 1 d PDU A 1 0.0586(15) Uani 0.50 1 d PDU A 1 0.0400(10) Uani 0.50 1 d PDU A 1

https://www.ccdc.cam.ac.uk/Community/csd-community/

0

Page

https://www.data.cam.ac.uk/funders

Funder Research Data Sharing Policies

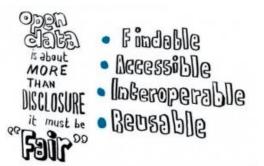
"Publicly funded research data are a public good, (...), which should be made openly available with as few restrictions as possible in a timely and responsible manner (...)."

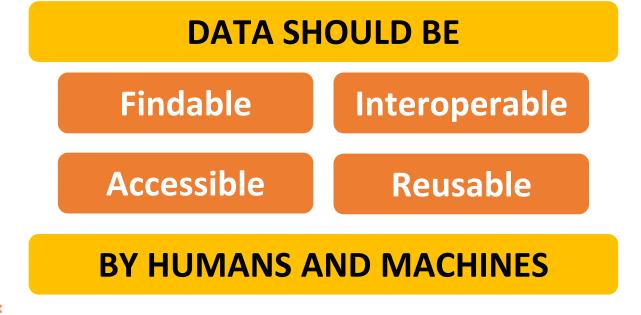
"Research data that supports publications must be stored for 10 years."

"EPSRC has the strictest policy on research data sharing..."

- All publications ... should have a statement describing how to access underlying data
- Data should be stored for at least 10 years or for 10 years from the last request for access to the data
- All data supporting research publications should be cited with the use of persistent links, for example DOIs (Digital Object Identifiers)...
- Research data should be accompanied by metadata ... to allow the discovery of data. https://www.data.cam.ac.uk/funders/epsrc-funded-researchers

UK Research


FAIR Data Principles


Comment | OPEN

The FAIR Guiding Principles for scientific data management and stewardship

Mark D. Wilkinson, Michel Dumontier [...] Barend Mons 🏁

Wilkinson, M. D. *et al.* The FAIR Guiding Principles for scientific data management and stewardship. *Sci. Data* 3:160018 doi: 10.1038/sdata.2016.18 (2016).

FORCE11
The Future of Research Communications and e-Scholarship

https://www.force11.org/group/fairgroup/fairprinciples

Aspects of FAIR Data

Findable

- Globally unique and persistent identifiers
- Rich metadata descriptions
- (Meta)data available in a searchable resource

Interoperable

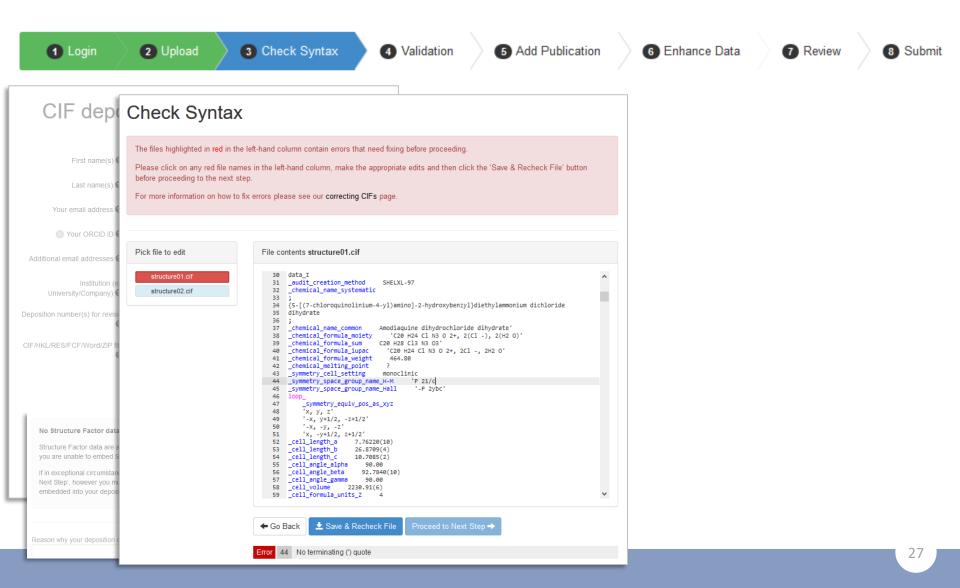
- Standard formats for representation
- Use of FAIR vocabularies
- References to other (meta)data

Accessible

- (Meta)data retrievable by their identifier
- Standard, open communication protocols
- Metadata accessible even when data are not

Reusable

- Described with a plurality of attributes
 - data usage licenses
 - detailed provenance
 - domain-relevant community standards


CCDC Deposition Services

1 Login	2 Upload 3 Check Synta	x 4 Validati	on 5 Add Publica	tion 6 Enhance Data	a 7 Review	8 Submit
CIF depos	ition and validation se	ervice				
First name(s) 3	lan					
Last name(s) 🕄 *	Bruno					
Your email address 🕄 *	bruno@ccdc.cama.cuk					
ORCID iD ID	0000-0003-4901-9936 () Create or Connect your OF	RCID ID 🏛				
Additional email addresses 📀	Please add any additional email addresses					
Institution (e.g. University/Company) 🕑 *						
Deposition number(s) for revision						
CIF/HKL/RES/FCF/Word/ZIP files ()	Select Files ✓ Done					
	structure01.cif 22.82 KB	×				
	CF structure02.cif 146.20 KB	×				
Details 😧 *	Remember my details					
Options 😧 *	I wish to run the IUCr checkCIF/PLATON service on my data					
	⊘ Reset Progress Proceed to Next Step →					

ь.

CCDC Deposition Services

Crystallographic Information File: CIF

Acta Cryst. (1991). A47, 655-685

International Union of Crystallography

Commission on Crystallographic Data Commission on Journals Working Party on Crystallographic Information

The Crystallographic Information File (CIF): a New Standard Archive File for Crystallography*

BY SYDNEY R. HALL

Crystallography Centre, University of Western Australia, Nedlands 6009, Australia

FRANK H. ALLEN

Crystallographic Data Centre, University Chemical Laboratory, Lensfield Road, Cambridge CB2 1EW, England

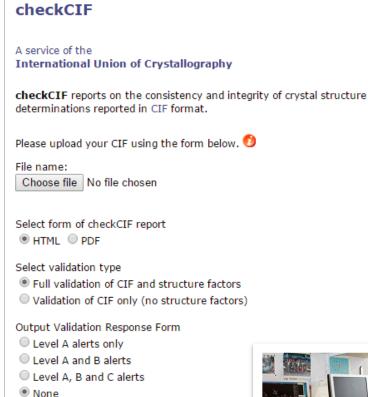
AND I. DAVID BROWN

Institute for Materials Research, McMaster University, Hamilton, Ontario L8S 4M1, Canada

(Received 8 April 1991; accepted 28 June 1991)

Data items semantically defined by CIF dictionaries (vocabularies)

- crystallisation details
- o instrument details
- software packages and parameters
- o quality metrics
- o publication details

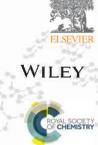

• A standard format for archive and exchange of crystallographic data

- $\circ \hspace{0.1 cm} \text{derived model}$
- processed data (structure factors)
- metadata about raw data (imgCIF)

```
loop
atom_site_label
atom site type symbol
 atom site fract x
 atom site fract v
atom site fract z
atom site U iso or equiv
atom site adp type
atom site occupancy
atom site symmetry multiplicity
 atom site calc flag
atom site refinement flags
 atom site disorder assembly
 atom site disorder group
C11 C1 0.5993(2) 1.0007(7) 0.8131(17) 0.044(3) Uani 0.50 1 d PDU A 1
S1 S 0.5321(3) 0.8260(6) 0.9322(3) 0.0327(11) Uani 0.50 1 d PDU A 1
  C 0.5529(4) 0.8802(9) 0.8184(9) 0.029(4) Uani 0.50 1 d PDU A 1
C3 C 0.5286(7) 0.8174(18) 0.7440(7) 0.031(4) Uani 0.50 1 d PDU A 1
H3A H 0.5350 0.8343 0.6771 0.037 Uiso 0.50 1 calc PR A 1
C4 C 0.4918(8) 0.7220(19) 0.7783(8) 0.027(4) Uani 0.50 1 d PDU A 1
C5 C 0.4900(6) 0.7171(14) 0.8779(9) 0.029(4) Uani 0.50 1 d PDU A 1
C12 C1 0.3202(2) 0.4982(6) 1.0830(5) 0.0586(15) Uani 0.50 1 d PDU A 1
S2 S 0.38755(19) 0.6658(5) 0.9578(5) 0.0400(10) Uani 0.50 1 d PDU A 1
```

Data Integrity: checkCIF

Send CIF for checking



- Checks consistency and integrity of the data
- Generates alerts that should either be corrected or explained

Level A	Most likely a serious problem - resolve or explain
Level B	A potentially serious problem, consider carefully
Level C	Check. Ensure it is not caused by an omission or oversight
Level G	General information/check it is not something unexpected

Much of checkCIF based on components of PLATON developed by Ton Spek, Utrecht University

CCDC Deposition Services

ı,

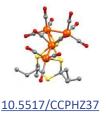
IF dept Check Syntax					
First name(s) Last name(s) Validation For more in View reports on th Your d	PN e consistency and integrity of your structures	S			
Datablock: sa2906a Bond precision: C-C = 0.0118 Å Wavelength=0.71 Cell: a=6.991(5) b=10.778(5) c=15.575(5) alpha=90 beta=90 gmmm=90 beta=90	IUCr checkCIF (2)		Unit cell	check 🛛 🌜	
Temperature: 293 K Temperature: 293 K Calculated Reported Volume 1173.6(11) 1174(2) Space group P 22 21 21 1174.6(2) Hall group P 2ac 2ab 7 Moiety formula C8 H12 Cu N4 05 C8 H12 Cu N4 0 Mr 307.77 301.7 Mg.gr cm-3 1.742 1.742 Max (mm-1) 1.852 1.852 Moo 628.0 68.0	IUCr checkCIF Response Please enter your reponse here for structure02.cif / data_se2906a.	se FAMCU	- 9-9-9	Deposition Number(s): 1501474 Space Group: P 2 ₁ 2 ₁ 2 ₁ (19) Cell: a 6.9209(2)Å b 10.5769(2)Å c 15.4237(4)Å, α 90° β 90° γ 90°
F000' 629.54 h,k,lmax 9,13,20 href 3036[1759] 2901 Tmin,Tmax Tmin' Correction method= Not given Data completeness= 1.65/0.96 Theta(max)= 28.660 R(tefletcions)= 0.0690(1863) wR2(teflections)= 0.1805(2901 5 = 0.913 Mpar= 169	EXPT005_exptl_crystal_description is missing DIFF003_ddffm_measurement_device_type is missing PLAT183 Missing_cell_measurement_refins_used Value Please Do 1	se FINXAD		Deposition Number(s): 912870 Space Group: P 2 ₁ 2 ₁ 2 ₁ (19) Cell: a 6.991(5)Å b 10.778(5)Å c 15.575(5)Å,	α 90.00° β 90.00° γ 90.
The following ALERTS were generated. Each ALERT has the format test-mame ALERT alert-type alert-level. Click on the hypeFillski for more details of the test. Alert level A EXFOOS ALERT 1 a _exptL_crystal description is missing The following tests will not be performed. CRYSR_01 DIFFOOS_ALERT 1 a _ufiftn_measurement_device_type is missing	PLAT184 Missing _cell_measurement_theta_min Value Please Do 1 PLAT185 Missing _cell_measurement_theta_max Value Please Do 1 V Level B	se _{GIDXUM}		Deposition Number(s): 1167512 Space Group: P 2; 2; 2; (19) Cell: a 6.844(2)Å b 10.975(5)Å c 15.363(5)Å,	α 90° β 90° γ 90°
Diffractometer make and type. Replaces_diffr_measure PLATISS_ALERT 1.A Missing_cell measurement_refine_used Yalue Step: PLATISE ALERT 1.A Missing_cell_measurement_theta_min Value VALUET SALERT 1.A Missing_cell_measurement_theta_max Value Valuet 1 VALUET Level B PLATISE ALERT 2.B	PLAT420 D-H Without Acceptor O4H2B . Please Check	KELCA		Deposition Number(s): 886135 Space Group: P 2 ₁ 2 ₁ 2 ₁ (19) Cell: a 6.953(1)Å b 10.665(2)Å c 15.414(3)Å,	

CCDC Deposition Services

	Syntax	4				
The files hi First name(s) € Please clic	Validation	· ·	Ilographer Def	tails d with the data below. The email add	ress will be	
Add Publicatio	n	used to notify the crystallog		name, affiliation, country and if appro		
Please check and add/update the p you don't know the full publication	ublication details shown below. details then please provide the current list of authors	s fo CSD Cc	ommunicatio	ns		
Authors 9*	Nicola Lavery, Arthur Smith			ugh the CSD as a CSD Communi nications the No. 1 place to publi		ures wer
Journal name 😧		Pu	,	······································		
Volume 😡	Volume		Recognition			
Year 😧	Year		A citable DOI allows yo ORCID record.	ou to receive credit for your struc	ctures and add the data to	o you
Page 🕄	Page		If you would like to refe following style of citation	erence a CSD Communication th	en we would recommend	using the
Publication DOI 🕄	E.g. 10.14469/hpc/2300	-	"D.S.Cati, H.Stoeckli-E 10.5517/cc7mw2s"	Evans, CCDC 227635: CSD Com	munication, 2004, DOI:	
Additional information <table-cell></table-cell>			10.5517/cc711w2s			
			Discoverability			, the Web

Identifiers and Data Citation

Data should be considered legitimate, citable products of research...


https://www.force11.org/datacitation

Dataset Publication CCDC 610092: Experimental Crystal Structure Determination. A. Crystallographer, Cambridge Crystallographic Data Centre (2007) http://dx.doi.org/10.5517/ccngvdb

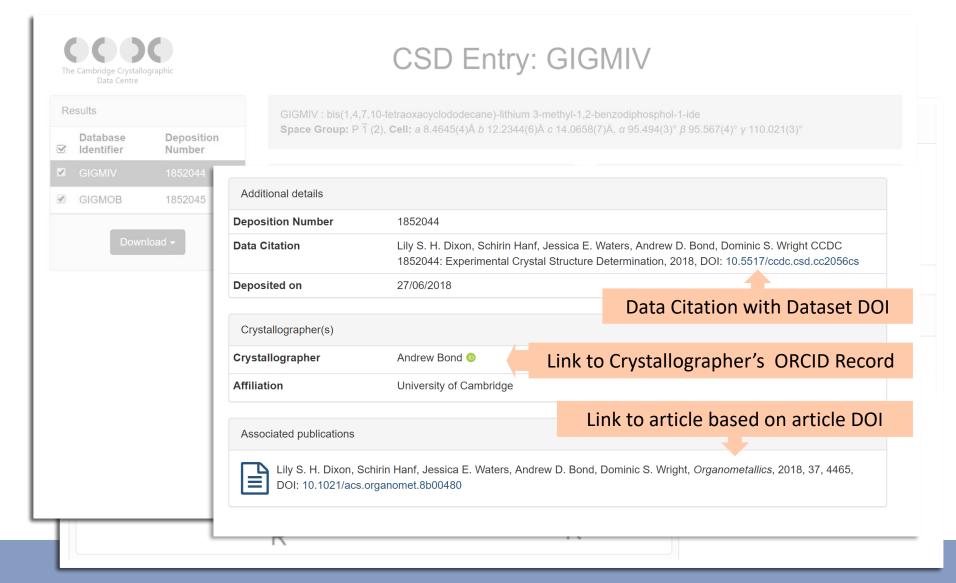
The CCDC registers DOIs for datasets through DataCite

Metadata for CCDC datasets is openly accessible via DataCite

Foundation for interoperability and formalising data citation

ORCID IDs for Researchers

At least 30% of current CSD depositors provide an ORCID ID


Andrew Bond

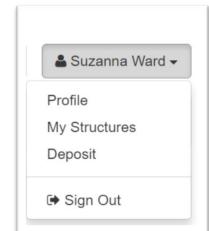
ORCID ID

Dhttps://orcid.org/0000-0002-1744-0489

Linking Researchers, Datasets and Articles

CCDC Deposition Services

١.,


CIF dep(Check	Syntax Validation	Enhance Data				
First name(s) Please clic		Pick a structure to edit	3D viewer	Chemical diagram	0	
Add Publicatio	n	structure01.cif				
		data_l] , 🚴 _		\widehat{O}	
Please check and add/update the		structure02.cif	- 🔸 🐋 .	Cprore	Ph Ph	
If you don't know the full publicatio	n details then please provide the ct	data_sa2906c data_sa2906a		R.	N C CH	
Autor Ot	Marcha Lawrey, Asthur Oscith	data_sa2906b		103	Ph Cr	
Authors 🕑 *	Nicola Lavery, Arthur Smith	data_sa2906g		₩,c´ _	-N Ph' Cp Fe*	
Journal name 😡			ુમિં		N CO	
Volume 😡	Volume					
Totanio Q				JSmol NCCH ₃	BF ₄ H ₂ O	
Year 🚱	Year					
Page 🚱	Page	data_sa2906c		Associated DOIs		
-		<pre>21 # For further information on the CCDC, 22 # data retrieval see:</pre>	data deposition and	^ Raw data DOI ()		
Publication DOI 😨	E.g. 10.14469/hpc/2300	23 # www.ccdc.cam.a 24 #				
Additional information 😡		25 # Bona fide researchers may freely down 26 # from this site to visualise CIF-encod 27 # to carry out CIF format checking resp	ded structures and			
		28 # 29 data_sa2906c		Data fields		
	If you do not intend to publish y immediately through the Cambr	30 31 32 _audit_creation_method SHELXL-	-97	Compound name	0	
	(ICSD) then please click the 'Pt	<pre>33 _chemical_name_systematic 34 ; 35 Bis(acetonitrile-\kN)-{(2Rp,2''Rp)-1,1''</pre>	,	Bis(acetonitrile-\kN)-{(2Rp,2"Rp)-1,1"-[1,2-ethanediylbis(nit	
	published in the CSD as a <u>CSD</u> <u>Communication</u> .	36 [1,2-ethanediylbis(nitrilomethylidyne)]b 37 \k^4^N,N',P,P'}-iron(ii) tetrafluorobora	bis[2-(diphenylphosphino)-ferrocene]-	Synonyms/other n	ames 😧	
		38 ;				
	Publish in a Database		MB209 at 200K'			
	Publish in a Database	<pre>40 _chemical_melting_point ? 41 _chemical_formula_moiety</pre>		Crystal colour 9		
	Publish in a Database Error 44 N	40 _chemical_melting_point ? 41 _chemical_formula_moiety 42 'C52 H48 Fe3 N4 P2, 2(B F4), C2 H3 N, 0.	.5(H2 0)' 52 B2 F8 Fe3 N5 00.50 P2'	Crystal colour 🕄		

My Structures

• Personalised deposition portal launched December 2016

- Ability to log on and view and retrieve depositions
- Deposit and revise data
- Edit and update basic information
- Publish data directly as a CSD Communication
- Share data with co-workers

$\mathbf{(0)}$

		res							
Se	arch by CCDC Nun	nber		Q	Clear Filters		🖺 Sa	ve Settings ×	Reset Settings
leas	e contact deposit@	@ccdc.cam.ac.uk				you are still unable to see your levant column heading.	structures after you ha	ve received your	CCDC numbe
o or	der the results by a	Data block	click on the column	heading you v Deposited By	vish to order you	✓ Formula	✓ Embargoed …	✓ Status	~
	1416019	data_amit63m	12/01/2017	mplightfoot74@	g AHUXUY	C14 H13 Cl1 N2 Pd1 S1		Published in the CSD	Details
	1416026	data_mn467	12/01/2017	mplightfoot74@	g AHUXOS	C21 H22 O2 S1		Published in the CSD	Details
	1416025	data_l	12/01/2017	mplightfoot74@	g AHUXIM	C6 H7 Cl1 N2 O1		Published in the CSD	Details

Over 15,000 registered users

Enablers of FAIR Crystallography

Standard File Formats and Vocabularies

- Crystallographic Information File (CIF)
- □ CIF Dictionaries (vocabularies)
- CheckCIF Data Validation Service

Standard Identifiers – disambiguation and interoperability

Digital Object Identifiers – for articles and data

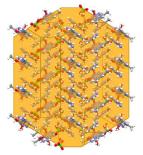
- □ ORCID iDs for researchers
- Trusted searchable data repositories
 - Cambridge Structural Database
 - □ Inorganic Crystal Structure Database
 - 🖵 Protein Data Bank

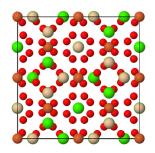
Crystal Structure Databases

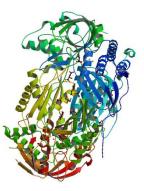
• Cambridge Structural Database

- Organic and Metal-organic compounds
- >970,000 structures
- Established in 1965

ORLDWI


• Inorganic Crystal Structure Database

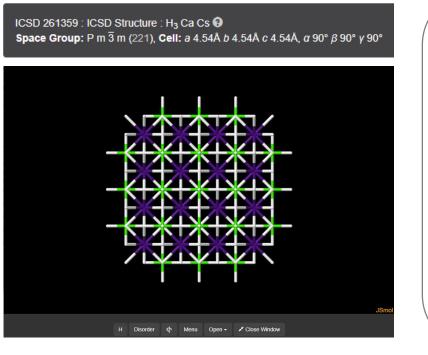

- Inorganic compounds
- >200,000 structures
- Established in 1978


Protein Data Bank

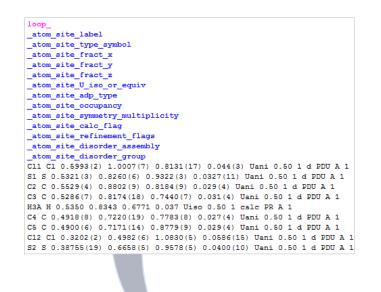
- Biological macromolecules
- >140,000 structures
- Established in 1971

Free, unified deposition and access of crystal structure data

- July 12, 2018 https://www.ccdc.cam.ac.uk/News/List/2018-07-new-joint-services/


The Cambridge Crystallographic Data Centre (CCDC) and FIZ Karlsruhe – Leibniz Institute for Information Infrastructure (FIZ Karlsruhe) today announced the launch of their joint deposition and access services for crystallographic data across all chemistry. These services will enable researchers to share data through a single deposition portal and explore all chemical structures for free worldwide.

ICSD Entry: 261359


	Results					
	Database Identifier	Deposition Number				
-	ICSD 261358	1719195				
•	ICSD 261359	1719196				
-	ICSD 261889	1719655				
-	ICSD 261890	1719656				
-	ICSD 422363	1733975				
-	ICSD 422410	1734003				
1	ICSD 422411	1734004				
Download -						

- New Joint Deposition and Access Portal for Organic and Inorganic crystal structures
- CCDC's infrastructure was adapted to accommodate inorganic structures from FIZ
- Implementation greatly aided by use of a common standard format (CIF)

The CSD: Crystallography and Chemistry

- A reliable chemical representation is essential for enabling reuse and application of crystallographic data
- Representation is generated at CCDC using a combination of automated processes and manual validation

P(A|B) =

Assignment of chemistry is required to make data findable, interoperable and reusable

A representation of chemistry can be included in a CIF but in deposited files this is rarely found

Chemistry Data Initiatives

Enablers of FAIR Chemistry

• Technical Enablers

□ Standard Identifiers (InChI)

Open File Formats (Structures)

□ Standard File Formats (Spectra)

□ Terminologies/Vocabularies

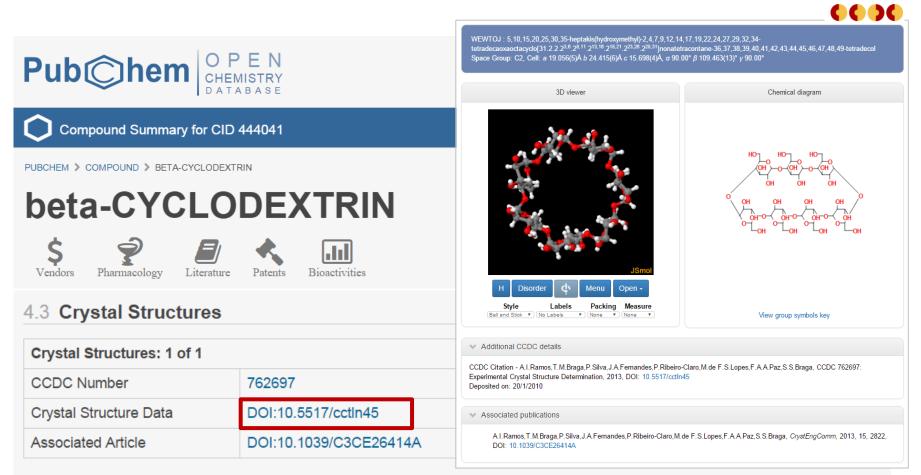
Social Enablers

Domain Data Activities

General Data Initiatives

Linking Crystal Structures to PubChem

PubChem: A database of chemical molecules and their activities against biological assays


	InChl Key:	WHGYBXFWUBPSRW-FOUAGVGXSA-N
Pub chem OPEN CHEMISTR	l Y E	
Compound Summary for CID 44404	1	
PUBCHEM > COMPOUND > BETA-CYCLODEXTRIN		
beta-CYCLODE \$ 20 Pharmacology		
4.3 Crystal Structures		8
Crystal Structures: 1 of 1		
CCDC Number 7626	697	
Crystal Structure Data DOI:	10.5517/cctln45	
Associated Article DOI:	10.1039/C3CE26414A	

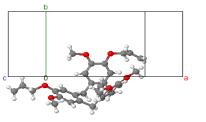
▶ from The Cambridge Structural Database

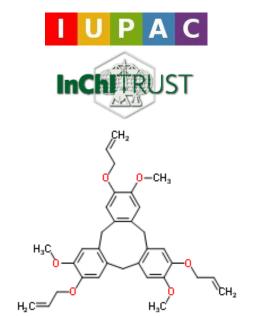
Linking Crystal Structures to PubChem

PubChem: A database of chemical molecules and their activities against biological assays

from The Cambridge Structural Database

Linking enabled by InChI


Associated Hyperlink: <u>http://dx.doi.org/10.5517/cc4zfp6</u>


Comments: Structure CCDC 148418 from the Cambridge Structural Database reported in RSC article http://dx.doi.org/10.1039/b000825g

Unit cell: a=14.4429(5)Å, b=8.0609(3)Å, c=24.3908(7)Å, alpha=90.00°, beta=99.510(2)°, gamma=90.00°, T=123(2)K, space group P21/n, Z=4

Submitted by: antony.williams

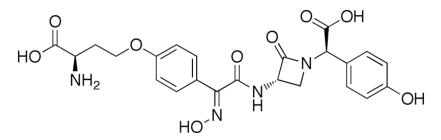
Standard InChI:

InChI=1S/C33H36O6/c1-7-10-37-31-19-25-13-23-17-29(35-5)33(39-12-9-3)21-27(23)15-24-18-30(36-6)32(38-11-8-2)20-26(24)14-22(25)16-28(31)34-4/h7-9,16-21H,1-3,10-15H2,4-6H3

Standard InChIKey: IZHKSTHBLQRIOW-UHFFFAOYSA-N

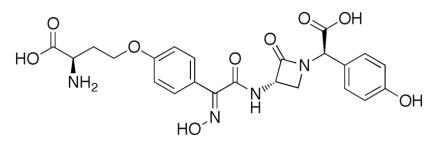
The IUPAC International Chemical Identifier

The IUPAC International Chemical Identifier ($InChI^{TM}$) is a non-proprietary identifier for chemical substances that can be used in printed and electronic data sources thus enabling easier linking of diverse data compilations.


- Initially developed through an IUPAC project from 2000-2004
- Development now overseen by the InChl Trust
- IUPAC still involved in the scientific direction
- Development driven through IUPAC and other Task Groups

https://www.inchi-trust.org/

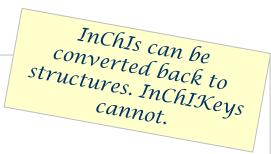
Anatomy of an InChl


Nocardicin A From Wikipedia, the free encyclopedia

InChI=1S/C23H24N4O9/c24-16(22(31)32)9-10-36-15-7-3-12(4-8-15)18(26-35)20(29)25-17-11-27(21(17)30)19(23(33)34)13-1-5-14(28)6-2-13/h1-8,16-17,19,28,35H,9-11,24H2,(H,25,29)(H,31,32)(H,33,34)/b26-18+/t16-,17+,19-/m1/s1

- InChl layers
 - Main layer
 - formula
 - connections
 - H atoms
 - Atom and Bond Stereochemistry
 - Isotopic and Fixed Hydrogens (tautomerism)
 - Charge

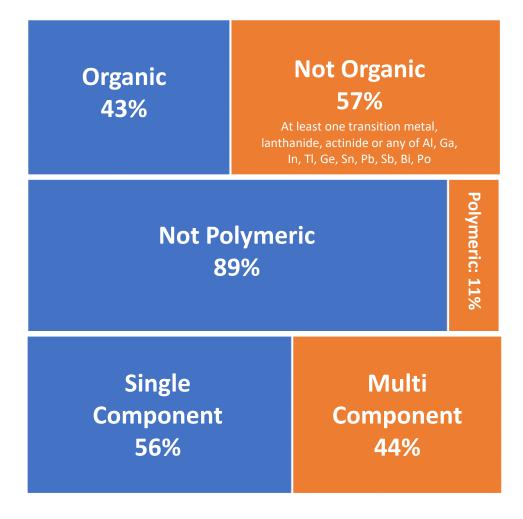
InChlKeys

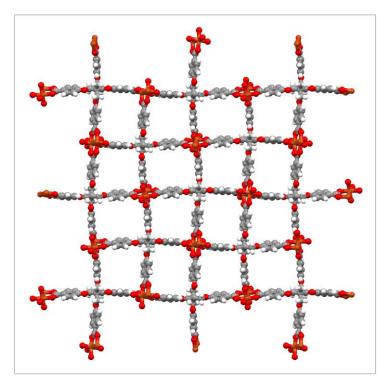


Nocardicin A From Wikipedia, the free encyclopedia

InChIKey=CTNZOGJNVIFEBA-TWTPMLPMSA-N

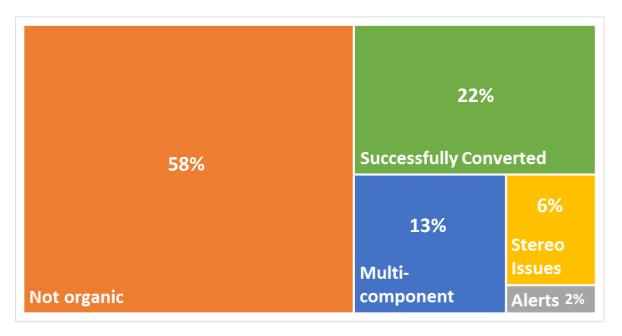
a hashed version of the full standard InChI


- InChI layers
 - Main
 - formula
 - connections
 - H atoms
 - Deprotonation indicator (related to charge)
 - Stereo
 - Isotopic and Fixed hydrogens
 - Standard/non-standard, version number



Millions of InChI and InChIKeys have been generated for structures in e.g. PubChem, ChEMBL, **ChemSpider**

What's in the CSD?



EPOTAF: CCDC 779539 doi:10.5517/ccv55fl (C₃₃ H₂₈ Cu₂ O₁₄)_n, 7n(C₃ H₇ N O), 3n(C₄ H₈ O₂), n(C H₄ O)

InChI Challenges

Generation of reliable InChIs for chemical substances in the CSD

Based on a subset of 495,751 entries from CSD V5.36

Order of filtering entries out:

- Not organic
- Multi-component
- InChI alerts
- Stereochemistry Issues

- Can confidently generate InChIs for ~22% of CSD entries
- If multi-component entries included then ~35% assuming no other issues
- If based on just organic compounds then 52% (up to 82% including multi-component)

InChI Workshop, Cambridge UK, 4-5 February 2019

Organometallics

Mixtures

Reactions

QR Codes

Educational Resources

Variability/uncertainty, e.g.

- Tautomers
- Stereochemistry
- Positional Isomers

s - etc.

InChI Chemical Data Standard: Identifiers and Extensions Professor Jonathan Goodman: InChI Champion

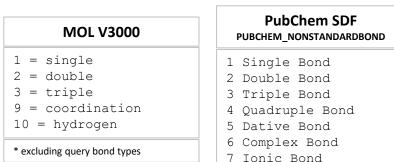
Wed 13 February 2019, 14:30 - 15:30, Room U203 at the Department of Chemistry. Book at https://www.training.cam.ac.uk/chem/event/2855805 or email cmc32@cam.ac.uk.

InChI, InChIKeys, Reactions, Mixtures, QR Codes and more...

Chemistry Structure File Formats

- InChIs are generated using a standard InChI Generator supplied by the InChI Trust
- To reliably generate InChIs a reliable digital representation of a chemical structure must be supplied as input
- There are many different file formats that aim to electronically represent a chemical structure
- Some are ubiquitously used and can be considered *de facto* standards – e.g. MOL/SDF, SMILES
- There are ways of **inter-converting** between different file formats

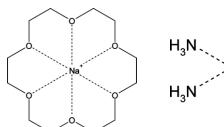
Open Babel: a chemical toolbox designed to speak the many languages of chemical data

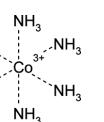


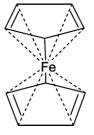
- <u>Common cheminformatics formats</u>
 - <u>Canonical SMILES format (can)</u>
 - <u>Chemical Markup Language (cml, mrv)</u>
 - InChl format (inchi)
 - MDL MOL format (mol, mdl, sdf, sd)
 - Protein Data Bank format (pdb, ent)
 - SMILES format (smi, smiles)
 - Sybyl Mol2 format (ml2, sy2, mol2)
- Other cheminformatics formats
 - Accelrys/MSI Biosym/Insight II CAR format (arc, car)
 - Accelrys/MSI Cerius II MSI format (msi)
 - Accelrys/MSI Quanta CSR format (csr)
 - MCDL format (mcdl)
 - MSI BGF format (bgf)
 - PubChem format (pc)
- <u>Computational chemistry formats</u>
 - ADF cartesian input format (adf)
 - ADF output format (adfout)
 - CAChe MolStruct format (cache, cac)
 - CASTEP format (castep)
 - Cacao Cartesian format (caccrt)
 - <u>Cacao Int</u>

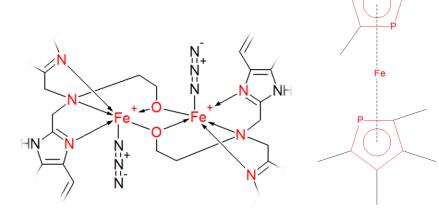
Reads, writes and converts over 110 chemical file formats

Reliable Input Representations

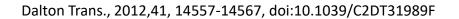

- How best to reliably represent organometallics?
 - dative vs covalent bonds?
 - explicit hydrogens/valencies?
 - dummy atoms?
 - zero-order bonds?

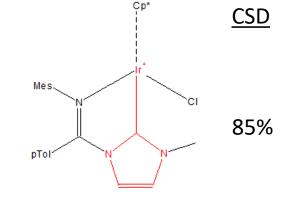



/ IONIC Bond

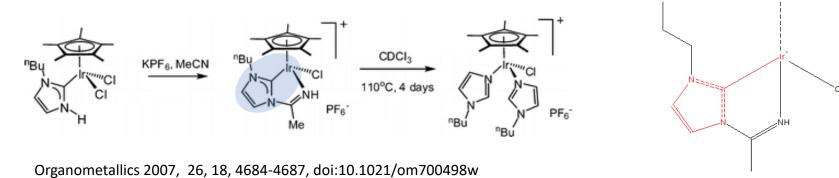

	ACD/	Lab	s MC	DL V2	000 I	Exten	sion	S	
М	ZZF	3	1	41	2	42	3	43	
М	ΖZΗ	1	5	2	3	4	5	6	
М	ΖZΗ	2	5	7	8	9	10	11	
М	ΖZΗ	3	5	12	14	15	16	17	
М	ΖZΕ	2	42	18	43	18			

Accurate Specification of Molecular Structures: The Case for Zero-Order Bonds and Explicit Hydrogen Counting. Alex M. Clark. J. Chem. Inf. Model., 2011, 51 (12), 3149. doi:10.1021/ci200488k





Consistent Structure Representation



ECIWUK CCDC:872879 10.5517/ccy99dx

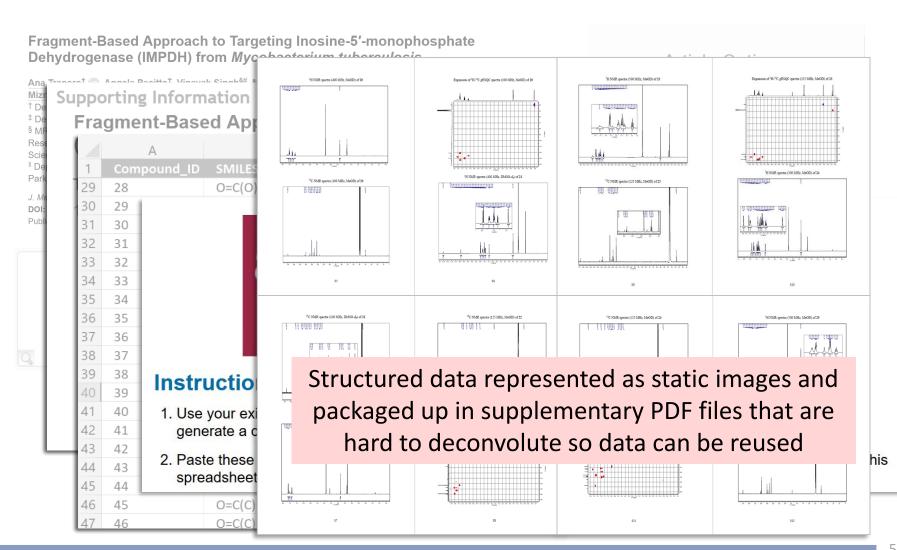
Et

Cp*

LIMXAH CCDC:664254 <u>10.5517/ccq96kr</u>

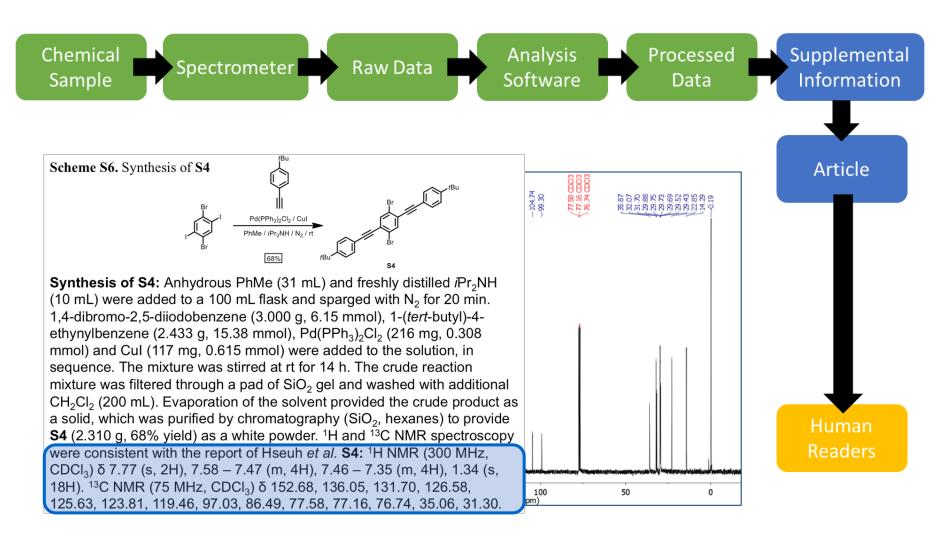
12%

Article Options

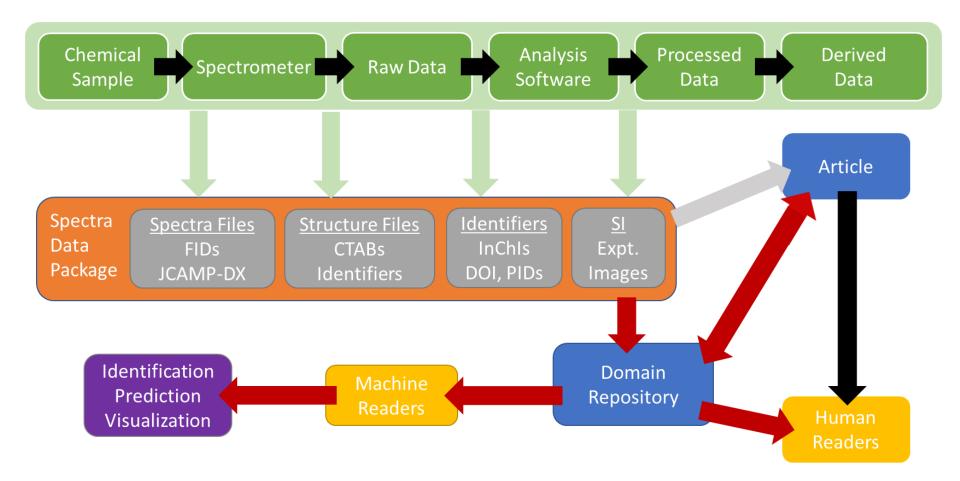

Publishing Chemical Structures

Fragment-Based Approach to Targeting Inosine-5'-monophosphate Dehydrogenase (IMPDH) from *Mycobacterium tuberculosis*

† De ‡ De		ortin	g Informatio			ophosphate Dehydrogenase			
[§] MF Res∉	1	gine							
Scie ^{II} Dei	1	Com	pound_ID SMI	IES	D	Mth IMPDH IC50 (uM)			
Park	29	28		(O)CSC1=NC(C2=CC=	C = C2 = CN1				
J. Me	30	29	0-0	(0)0301-NC(02-00-	,	nemar/submission/imemar_mfstrings.html			
DOI: Publi	31	30							
	32	31		Journal of	Why are Molecular Formula Strings				
	33	32		Medicinal	Formula Strings	AR 10.			
	34	33		Chemistry	important for your				
	35	34			importante tor your				
	36	35			research?				
	37	36			Watch the video >>>				
5	38	37							
4	39	38							
	40	39	Instructi	ons for Aut	hors				
	41	40		existing chemical o	drawing programs (e.g. ChemDr	aw, ACD ChemSketch, Marvin Sketch) to			
	42	41				npound presented in your article.			
	43	42							
_	44	43				ith basic information about each compound. Thi			
	45	44	spreadshe	eet will provide a m	achine-readable version of the l	ey data presented in the article's tables.			
	46	45	0=0	(C)NC1=NC(C2=CC=C	(Br)C=C2)=CN1	_			
	47	46		(C)NC1=NC(C2=CC=C		_			



Publishing Chemical Spectra



Chemistry Data Publication Workflow (simplified)

Chemistry Data Publication Workflow (an alternative)

Standards for Spectra: JCAMP-DX

http://www.jcamp-dx.org/

• JCAMP-DX is a standard for spectroscopic data developed in the 1980s

JCAMP-DX is a standard file form for exchange of infrared spectra and related chemical and physical information between spectrometer data systems of different manufacture, main-frame time-sharing systems, general purpose lab computers, and personal computers. It is compatible with all media: telephone, magnetic and optical disk, magnetic tape, and even the printed page (via optical reader). JCAMP-DX: A Standard Form for Exchange of Infrared Spectra in Computer Readable Form Applied Spectroscopy (1988)

- It has undergone a number of enhancements to address new instrumentation needs, as well as extensions to new spectroscopic methods.
- Vendors have added custom extensions for their own instruments; new metadata standards, such as ORCIDs and InChIs have been developed.
- Working group of IUPAC Subcomittee on Cheminformatics Data Standards looking at updating the standard

The following FAQs have been asked by members of the Department of Chemistry and answered by members of the Open Data team at the University.

If you have any amendments or further questions you would like to ask please contact the Librarian at the Department of Chemistry, Clair Castle, at library@ch.cam.ac.uk, in the first instance.

The Open Data team can also be contacted at info@data.cam.ac.uk, http://www.data.cam.ac.uk/.

FAQs

What would open data for a typical synthetic organic chemistry paper look like?

For a synthetic paper you might include the output files from NMR, UV/Vis, and IR measurements (for example). These should be in a format that others can use, so the data should be in a format that others can use.

experiments, wouldn't meet this criteria). So f example) so that future users can replot the o

Lab books form an important record of the ex least the detailed methodology for the experi

Output files for NMR, UV/Vis, IR etc. should be in formats that others can use – images of graphs, especially of NMR experiments, don't meet this criteria

However, if it would be too time consuming and costly to digitise the lab books then you can simply create a meta-data record on the repository so that future users can contact you to physically access your lab books.

What would open data for a typical molecular dynamics based paper look like?

For a computational paper you might include the input and output files from the calculations. Whether you need to include binary output files (which are often produced but hardly ever analysed) is left at your discretion, but if you feel that these files are necessary for the interpretation of the results then they should also be included.

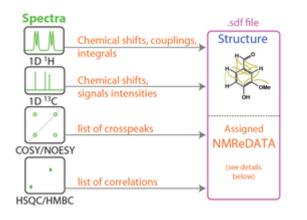
If you have performed a whole suite of experiments, all of which are similar, then it might only be necessary to provide the input files and a couple of example output files. Future researchers can then scrutinize a sample of your output and then re-run all your input files if they wish to do so.

Convert your files into an open data format

NMR spectroscopy data from TopSpin

These instructions are for converting NMR spectroscopy data from TopSpin to a text file in the internationally accepted open data format JCAMP-DX (http://www.jcamp-dx.org).

In TopSpin


```
File
Save
Save data set in a JCAMP-DX file
OK
Optional: Change name and directory
Leave "Type of archive file = JCAMP DIFF/DUP"
Change "Include these data types =" to "FID+All_PROCNOS"
Leave "JCAMP version = 6.0"
OK
```

Save as JCAMP-DX – with FIDs

NMReDATA initiative

GENERATE, STORE AND SHARE THE DATA EXTRACTED FROM SET OF NMR SPECTRA ASSOCIATED TO A COMPOUND

The goal of the NMReDATA initiative is to improve the FAIRness and quality of the NMR data available to the community.

Important benefits of the new format

- Improved quality of the NMR data
- Easier inclusion of NMR data in reports and articles
- Simplified referee work
- Compatibility with electronic storage in database
- Easier comparison of dataset
- Improved searchability of NMR data

Mnova Documentation Toolkit – Mpublish

- Researchers with access to Mnova can zip up publication quality images with raw data
- Publisher can digitally sign the zip file so data can be viewed by reviewers and readers without the need for a Mnova licence

FAIR Publishing Guidelines for Spectral Data and Chemical Structures in Support of Chemistry and Related Disciplinary Communities funded by NSF, Orlando FL, March 2019

WORKSHOP GOALS:

- 1. Workflow: develop digital data publishing model across stakeholders
- 2. **Guidelines**: formulate consistent guidelines for publishing FAIR chemical data for common data types
- **3. Value Proposition**: review re-use cases for chemical characterization data
- 4. **Coalition**: initiate process for ongoing coordination and stakeholder engagement

Publishers • Databases • Repositories • Software Developers • Researchers • Librarians Standards Organisations • Data Initiatives

Chemistry Publication Guidelines

What data should be published? How should it be validated? Where should it be stored?

- Idea to survey journal requirements for chemistry data initiated at an IUPAC/RDA workshop
- Sampling of requirements undertaken by Vin Scalfani, University of Alabama Libraries
- Discussion of survey at an session of the ACS Division of Chemical Information
- Prompted an **IUPAC taskforce** looking at requirements for a publication of spectra
- Issues relating to file formats discussed at IUPAC/CODATA workshop on publishing FAIR data
- Workflow discussions to be advanced at and NSF Workshop on Publishing Guidelines for Spectral Data and Chemical Structures

IUPAC Chemical Terminology

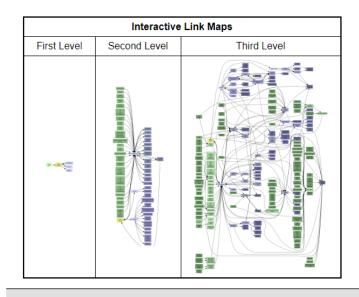
- Blue Book
 - Nomenclature of Organic Chemistry
- Red Book
 - Nomenclature of Inorganic Chemistry
- White Book
 - Biochemical Nomenclature
- Orange Book
 - Analytical Terminology
- Purple Book
 - Compendium of Polymer Terminology and Nomenclature
- Silver Book
 - Compendium of Terminology and Nomenclature of Properties Clinical Laboratory Sciences
- Green Book
 - Quantities, Units and Symbols in Physical Chemistry

$\mathbf{()}$

"Digital" Chemical Terminology

https://goldbook.iupac.org

- > 7000 terms with authoritative definitions, spanning the whole range of chemistry – with DOIs
- Source documents include *IUPAC Color Books* and recommendations published in *Pure and Applied Chemistry*
- Currently undergoing stabilization and development to provide a foundation for future application



dative bond

The <u>coordination</u> bond formed upon interaction between molecular species, one of which serves as a donor and the other as an acceptor of the electron pair to be shared in the complex formed, e.g, the N \rightarrow B bond in H₃ N \rightarrow BH₃. In spite of the analogy of dative bonds with covalent bonds, in that both types imply sharing a common electron pair between two vicinal atoms, the former are distinguished by their significant <u>polarity</u>, lesser strength, and greater length. The distinctive feature of dative bonds is that their minimum-energy rupture in the gas phase or in <u>inert</u> solvent follows the heterolytic bond cleavage path.

Source:

PAC, 1999, 71, 1919 (Glossary of terms used in theoretical organic chemistry) on page 1933

Cite as:

IUPAC. Compendium of Chemical Terminology, 2nd ed. (the "Gold Book"). Compiled by A. D. McNaught and A. Wilkinson. Blackwell Scientific Publications, Oxford (1997). XML on-line corrected version: http://goldbook.iupac.org (2006-) created by M. Nic, J. Jirat, B. Kosata; updates compiled by A. Jenkins. ISBN 0-9678550-9-8. https://doi.org/10.1351/goldbook.

Last update: 2014-02-24; version: 2.3.3.

DOI of this term: https://doi.org/10.1351/goldbook.D01523.

$\mathbf{()}$

Alpha API v0.1 (6/30/17)			
While we expect a lot of humans to stop by the Gold Book, its about time that the vocabulary be f towards computers and have set up an application programming interface (API) so they may download a of stuff. Here is the overview of the API and we are working on additional documentation. (click the h below to toggle whats visible.			
Example(s)			
/ [download] /terms/index/all (just "terms" works too) /terms/index/C/xml referring page if no data) /terms/index/XYZ/json/download			
gnored) e ignored)			
mat]/[download] /terms/view/A00001 /terms/view/P04409/json /this) /terms/view/ZT07132/xml/download ignored) e ignored)			
and re i			

Ack: S. Chalk

Chemistry Data Initiatives

Enablers for FAIR Chemistry data

- □ Standard Identifiers (InChI)
- Open File Formats (Structures)
- □ Standard File Formats (Spectra)
- □ Terminologies/Vocabularies
- Active Communities
 - InChl Trust
 - □ IUPAC Committees and Subcommittees
 - □ ACS Division of Chemical Information (CINF)
 - RDA Chemistry Research Data Interest Group (CRDIG)
 - GO-FAIR Chemistry Implementation Network (ChIN)

Chemistry Data Interest Group: DIGChem

https://bit.ly/digchem-activity

DIGChem

Home

DIGChem Events

Publishing Guidelines

Survey

WorkflowTools

JCAMP-DX

NMR/Spectra Repositories

OpenStructures

DataCite Recommendations

Education

Professional Training

Cheminformatics Color Book

Gold Book Website

The Data Interest Group/Chemistry: DIGChem

Coming in 2018:

- <u>Supporting FAIR Exchange of Chemical Data Through Standards Development</u>, Amsterdam, July 16-17, 2018.
- Activities at ACS/Boston, August 19-23, 2018
- International Data Week, Gaborone, Botswana, November 5-8, 2018

More (Future/Past)

The Data Interest Group/Chemistry is an effort to f order to accomplish this vision, CRDIG is analyzing data repositories, evaluating and updating existing advocating for and educating researchers, librarian Anyone in the broader chemistry community who is conjunction with the International Union of Pure ar <u>Data Standards (SCDS)</u> and the <u>Research Data Allia</u> Discussions of the interest group have been held at Information (CINF), at the RSC Chemical Informatic General Assembly, at RDA Plenaries, and at the Bei

Chemistry Research Data IG

IG **Group details**

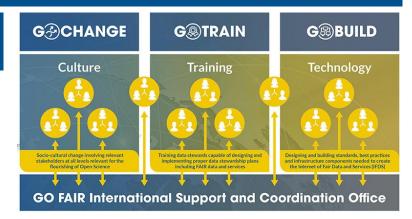
Status: Recognised & Endorsed

Chair (s): Leah McEwen, Stuart Chalk, Ian Bruno, David Martinsen, Richard Kidd

Building the social and technical bridges to enable open data sharing

https://bit.ly/digchem

$\mathbf{O} \mathbf{O} \mathbf{O} \mathbf{O}$


FAIR Data Initiatives

A GO FAIR Chemistry Implementation Network (ChIN) has been recently endorsed

Implementation Networks

- The GO FAIR movement aims to implement the Internet of FAIR Data and Services
- Related to the European Open Science Cloud (EOSC), involving partners outside of the EU

Pistoia Alliance

Lowering Barriers to Innovation in Life Sciences R&D

Implementation of FAIR Data Principles for Pharma and Life Sciences

Unmet Needs:

The advent of ML / Al for pharma is very promising, however without a basic amount of metadata and smart annotation of existing data assets, the algorithms cannot make much headway. Several years of IMI knowledge management projects, experiments with data warehouses, data lakes etc. have made it clear that proper semantic annotation of data assets is a hard and resource intensive but very important hurdle to overcome.

Forthcoming Events

- InChI Worshop: InChI Opportunities Department of Chemistry, Cambridge, February 4-5, 2019
- InChI Chemical Data Standard: Identifiers and Extensions Department of Chemistry, Cambridge, February 13, 2019, 14:30 U203
- FAIR Publishing Guidelines for Spectral Data and Chemical Structures Orlando, March 28-29, 2019
- IUPAC General Assembly and World Congress Celebrating 100 Years of IUPAC, Paris, July 5-12, 2019 Special Symposium: Digital Chemistry and the Lab of the Future

InChI Symposium

San Diego, August 23-24, 2019 (Followed by ACS National Meeting) https://www.eventbrite.com/e/inchi-symposium-tickets-52810788490

One Million Crystal Structures: A Wealth of Structural Chemistry Knowledge Symposium being planned for Fall 2019 ACS Meeting https://callforpapers.acs.org/sandiego2019/CINF

Summary

Chemistry Data Initiatives

- Initiatives aimed at supporting FAIR publication of chemistry data
- Motivated by guiding principles arising from global data initiatives
- □ Challenges being actively addressed by a range of community groups

• Cambridge Crystallographic Data Centre

- □ Sharing crystallographic data and knowledge since 1965
- □ Supporting FAIR publication and access to crystal structures
- □ Adopting and supporting community data standards

Cambridge Structural Database

- □ The world's repository of small molecule crystallographic data
- Providing knowledge and insights applicable across chemistry
- □ Available to you at the Department of Chemistry

The Cambridge Crystallographic Data Centre

International Data Repository Archive of crystal structure data High quality scientific database

Scientific Software Provider Search/analysis/visualisation tools Scientific applications

Collaborative Research Organisation

New methodologies Fundamental research

Education and Outreach Conferences, Workshops, Training, Teaching

@ccdc_cambridge

ccdc.cambridge

http://www.ccdc.cam.ac.uk/

Enriching Chemistry with Crystallographic Data and Knowledge

